skip to main content


Search for: All records

Creators/Authors contains: "Safro, Ilya"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. One of the key problems in tensor network based quantum circuit simulation is the construction of a contraction tree which minimizes the cost of the simulation, where the cost can be expressed in the number of operations as a proxy for the simulation running time. This same problem arises in a variety of application areas, such as combinatorial scientific computing, marginalization in probabilistic graphical models, and solving constraint satisfaction problems. In this paper, we reduce the computationally hard portion of this problem to one of graph linear ordering, and demonstrate how existing approaches in this area can be utilized to achieve results up to several orders of magnitude better than existing state of the art methods for the same running time. To do so, we introduce a novel polynomial time algorithm for constructing an optimal contraction tree from a given order. Furthermore, we introduce a fast and high quality linear ordering solver, and demonstrate its applicability as a heuristic for providing orderings for contraction trees. Finally, we compare our solver with competing methods for constructing contraction trees in quantum circuit simulation on a collection of randomly generated Quantum Approximate Optimization Algorithm Max Cut circuits and show that our method achieves superior results on a majority of tested quantum circuits. Reproducibility: Our source code and data are available at https://github.com/cameton/HPEC2022_ContractionTrees. 
    more » « less
  2. In 2020, the White House released the “Call to Action to the Tech Community on New Machine Readable COVID-19 Dataset,” wherein artificial intelligence experts are asked to collect data and develop text mining techniques that can help the science community answer high-priority scientific questions related to COVID-19. The Allen Institute for AI and collaborators announced the availability of a rapidly growing open dataset of publications, the COVID-19 Open Research Dataset (CORD-19). As the pace of research accelerates, biomedical scientists struggle to stay current. To expedite their investigations, scientists leverage hypothesis generation systems, which can automatically inspect published papers to discover novel implicit connections. We present automated general purpose hypothesis generation systems AGATHA-C and AGATHA-GP for COVID-19 research. The systems are based on the graph mining and transformer models. The systems are massively validated using retrospective information rediscovery and proactive analysis involving human-in-the-loop expert analysis. Both systems achieve high-quality predictions across domains in fast computational time and are released to the broad scientific community to accelerate biomedical research. In addition, by performing the domain expert curated study, we show that the systems are able to discover ongoing research findings such as the relationship between COVID-19 and oxytocin hormone.All code, details, and pre-trained models are available at https://github.com/IlyaTyagin/AGATHA-C-GP. 
    more » « less
  3. null (Ed.)
    HYPERGRAPHS provide the formalism needed to solve problems consisting of interconnected item sets. Similar to a traditional graph, the hypergraph has the added generalization that “hyperedges” may connect any number of nodes. Domains such as very-large-scale integration for creating integrated circuits [1], machine learning [2], [3], [4], parallel algorithms [5], combinatorial scientific computing [6], and social network analysis [7], [8] all contain significant and challenging instances of hypergraph problems. One important problem, Hypergraph partitioning, involves dividing the nodes of a hypergraph among k similarly-sized disjoint sets while reducing the number of hyperedges that span multiple partitions. In the context of load balancing, this is the problem of dividing logical threads (nodes) that share data dependencies (hyperedges) among available machines (partitions) in order to balance the number of threads per machine and minimize communication overhead. However, hypergraph partitioning is both NP-Hard to solve [9] and approximate [10]. 
    more » « less
  4. null (Ed.)
    Medical research is risky and expensive. Drug discovery requires researchers to efficiently winnow thousands of potential targets to a small candidate set. However, scientists spend significant time and money long before seeing the intermediate results that ultimately determine this smaller set. Hypothesis generation systems address this challenge by mining the wealth of publicly available scientific information to predict plausible research directions.We present AGATHA, a deep-learning hypothesis generation system that learns a data-driven ranking criteria to recommend new biomedical connections. We massively validate our system with a temporal holdout wherein we predict connections first introduced after 2015 using data published beforehand. We additionally explore biomedical sub-domains, and demonstrate AGATHA’s predictive capacity across the twenty most popular relationship types. Furthermore, we perform an ablation study to examine the aspects of our semantic network that most contribute to recommendation quality. Overall, AGATHA achieves best-in-class recommendation quality when compared to other hypothesis generation systems built to predict across all available biomedical literature. Reproducibility: All code, experimental data, and pre-trained models are available online: sybrandt.com/2020/agatha. 
    more » « less
  5. null (Ed.)
  6. null (Ed.)
    Topic modeling, a method for extracting the underlying themes from a collection of documents, is an increasingly important component of the design of intelligent systems enabling the sense-making of highly dynamic and diverse streams of text data related but not limited to scientific discovery. Traditional methods such as Dynamic Topic Modeling (DTM) do not lend themselves well to direct parallelization because of dependencies from one time step to another. In this paper, we introduce and empirically analyze Clustered Latent Dirichlet Allocation (CLDA), a method for extracting dynamic latent topics from a collection of documents. Our approach is based on data decomposition in which the data is partitioned into segments, followed by topic modeling on the individual segments. The resulting local models are then combined into a global solution using clustering. The decomposition and resulting parallelization leads to very fast runtime even on very large datasets. Our approach furthermore provides insight into how the composition of topics changes over time and can also be applied using other data partitioning strategies over any discrete features of the data, such as geographic features or classes of users. In this paper CLDA is applied successfully to seventeen years of NIPS conference papers (2,484 documents and 3,280,697 words), seventeen years of computer science journal abstracts (533,588 documents and 46,446,184 words), and to forty years of the PubMed corpus (4,025,976 documents and 386,847,695 words). On the PubMed corpus, we demonstrate the versatility of CLDA by segmenting the data by both time and by journal. Our runtime on this corpus demonstrates an ability to function on very large scale datasets. 
    more » « less
  7. Abstract Identification of influential nodes is an important step in understanding and controlling the dynamics of information, traffic, and spreading processes in networks. As a result, a number of centrality measures have been proposed and used across different application domains. At the heart of many of these measures lies an assumption describing the manner in which traffic (of information, social actors, particles, etc.) flows through the network. For example, some measures only count shortest paths while others consider random walks. This paper considers a spreading process in which a resource necessary for transit is partially consumed along the way while being refilled at special nodes on the network. Examples include fuel consumption of vehicles together with refueling stations, information loss during dissemination with error-correcting nodes, and consumption of ammunition of military troops while moving. We propose generalizations of the well-known measures of betweenness, random-walk betweenness, and Katz centralities to take such a spreading process with consumable resources into account. In order to validate the results, experiments on real-world networks are carried out by developing simulations based on well-known models such as Susceptible-Infected-Recovered and congestion with respect to particle hopping from vehicular flow theory. The simulation-based models are shown to be highly correlated with the proposed centrality measures. Reproducibility: Our code and experiments are available at https://github.com/hmwesigwa/soc_centrality 
    more » « less